A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. A divisor of an integer x
is an integer that can divide x
evenly.
Given an integer n
, return true
if n
is a perfect number, otherwise return false
.
Example 1:
Input: num = 28 Output: true Explanation: 28 = 1 + 2 + 4 + 7 + 14 1, 2, 4, 7, and 14 are all divisors of 28.
Example 2:
Input: num = 7 Output: false
Constraints:
1 <= num <= 108
The problem asks to determine if a given positive integer num
is a perfect number. A perfect number is a positive integer that is equal to the sum of its proper divisors (excluding itself).
The most efficient approach involves iterating only up to the square root of num
. This is because divisors come in pairs. If i
is a divisor, then num/i
is also a divisor. We only need to explicitly find divisors up to the square root; the others are implicitly found.
Algorithm:
Handle Base Case: If num
is 1, it's not a perfect number, so return false
.
Initialize Sum: Initialize a variable s
to 1 (since 1 is always a divisor).
Iterate up to the Square Root: Iterate through numbers i
from 2 up to the square root of num
.
Check for Divisibility: If num
is divisible by i
(i.e., num % i == 0
), then:
i
to the sum s
.i
is not equal to num/i
(this avoids adding the same divisor twice when i
is the square root of num
), add num/i
to s
.Compare Sum to Number: After the loop, check if the sum s
is equal to num
. If they are equal, num
is a perfect number, and we return true
; otherwise, return false
.
The following code implements the algorithm in several languages:
class Solution:
def checkPerfectNumber(self, num: int) -> bool:
if num == 1:
return False
s = 1
i = 2
while i * i <= num:
if num % i == 0:
s += i
if i * i != num:
s += num // i
i += 1
return s == num
class Solution {
public boolean checkPerfectNumber(int num) {
if (num == 1) {
return false;
}
int s = 1;
for (int i = 2; i * i <= num; i++) {
if (num % i == 0) {
s += i;
if (i * i != num) {
s += num / i;
}
}
}
return s == num;
}
}
class Solution {
public:
bool checkPerfectNumber(int num) {
if (num == 1) return false;
int s = 1;
for (long long i = 2; i * i <= num; ++i) { //Note: use long long to prevent overflow
if (num % i == 0) {
s += i;
if (i * i != num) s += num / i;
}
}
return s == num;
}
};
func checkPerfectNumber(num int) bool {
if num <= 1 {
return false
}
sum := 1
for i := 2; i*i <= num; i++ {
if num%i == 0 {
sum += i
if i*i != num {
sum += num / i
}
}
}
return sum == num
}
function checkPerfectNumber(num: number): boolean {
if (num <= 1) return false;
let sum = 1;
for (let i = 2; i * i <= num; i++) {
if (num % i === 0) {
sum += i;
if (i * i !== num) {
sum += num / i;
}
}
}
return sum === num;
}
Time Complexity: O(√n). The loop iterates up to the square root of n
.
Space Complexity: O(1). The algorithm uses a constant amount of extra space.
This optimized approach significantly improves efficiency compared to a naive solution that iterates through all numbers up to n
.