Given the head
of a linked list, return the node where the cycle begins. If there is no cycle, return null
.
There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next
pointer. Internally, pos
is used to denote the index of the node that tail's next
pointer is connected to (0-indexed). It is -1
if there is no cycle. Note that pos
is not passed as a parameter.
Do not modify the linked list.
Example 1:
Input: head = [3,2,0,-4], pos = 1 Output: tail connects to node index 1 Explanation: There is a cycle in the linked list, where tail connects to the second node.
Example 2:
Input: head = [1,2], pos = 0 Output: tail connects to node index 0 Explanation: There is a cycle in the linked list, where tail connects to the first node.
Example 3:
Input: head = [1], pos = -1 Output: no cycle Explanation: There is no cycle in the linked list.
Constraints:
[0, 104]
.-105 <= Node.val <= 105
pos
is -1
or a valid index in the linked-list.
Follow up: Can you solve it using O(1)
(i.e. constant) memory?
Given a linked list, find the node where the cycle begins. If there is no cycle, return null
.
This solution uses two pointers, slow
and fast
, to detect the presence of a cycle and find the cycle's starting point.
Algorithm:
Cycle Detection: Initialize slow
and fast
to the head of the linked list. Move slow
one node at a time, and fast
two nodes at a time. If a cycle exists, slow
and fast
will eventually meet.
Cycle Start Point: If slow
and fast
meet, indicating a cycle, reset slow
to the head. Move both slow
and fast
one node at a time. The point where they meet again is the start of the cycle.
Time Complexity: O(n), where n is the number of nodes in the linked list. We traverse the list at most twice.
Space Complexity: O(1). We use only a constant number of variables.
Code (Python):
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Solution:
def detectCycle(self, head: ListNode) -> ListNode:
slow = fast = head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if slow == fast: # Cycle detected
slow = head # Reset slow to head
while slow != fast: #Find intersection point
slow = slow.next
fast = fast.next
return slow # Intersection is cycle start
return None # No cycle
Code (Java):
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode slow = head, fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) {
slow = head;
while (slow != fast) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
}
return null;
}
}
Code (C++):
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *slow = head, *fast = head;
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
if (slow == fast) {
slow = head;
while (slow != fast) {
slow = slow->next;
fast = fast->next;
}
return slow;
}
}
return nullptr;
}
};
Code (Go):
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func detectCycle(head *ListNode) *ListNode {
slow, fast := head, head
for fast != nil && fast.Next != nil {
slow = slow.Next
fast = fast.Next.Next
if slow == fast {
slow = head
for slow != fast {
slow = slow.Next
fast = fast.Next
}
return slow
}
}
return nil
}
Code (JavaScript):
/**
* Definition for singly-linked list.
* function ListNode(val) {
* this.val = val;
* this.next = null;
* }
*/
/**
* @param {ListNode} head
* @return {ListNode}
*/
var detectCycle = function(head) {
let slow = head, fast = head;
while (fast && fast.next) {
slow = slow.next;
fast = fast.next.next;
if (slow === fast) {
slow = head;
while (slow !== fast) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
}
return null;
};
Code (TypeScript):
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function detectCycle(head: ListNode | null): ListNode | null {
let slow = head, fast = head;
while (fast && fast.next) {
slow = slow.next;
fast = fast.next.next;
if (slow === fast) {
slow = head;
while (slow !== fast) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
}
return null;
};
These code examples demonstrate the Two Pointers approach in several popular programming languages. They all follow the same algorithm and achieve the same time and space complexity.