Given a 0-indexed integer array nums
, find the leftmost middleIndex
(i.e., the smallest amongst all the possible ones).
A middleIndex
is an index where nums[0] + nums[1] + ... + nums[middleIndex-1] == nums[middleIndex+1] + nums[middleIndex+2] + ... + nums[nums.length-1]
.
If middleIndex == 0
, the left side sum is considered to be 0
. Similarly, if middleIndex == nums.length - 1
, the right side sum is considered to be 0
.
Return the leftmost middleIndex
that satisfies the condition, or -1
if there is no such index.
Example 1:
Input: nums = [2,3,-1,8,4] Output: 3 Explanation: The sum of the numbers before index 3 is: 2 + 3 + -1 = 4 The sum of the numbers after index 3 is: 4 = 4
Example 2:
Input: nums = [1,-1,4] Output: 2 Explanation: The sum of the numbers before index 2 is: 1 + -1 = 0 The sum of the numbers after index 2 is: 0
Example 3:
Input: nums = [2,5] Output: -1 Explanation: There is no valid middleIndex.
Constraints:
1 <= nums.length <= 100
-1000 <= nums[i] <= 1000
Note: This question is the same as 724: https://leetcode.com/problems/find-pivot-index/
Given a 0-indexed integer array nums
, find the leftmost middleIndex
such that the sum of elements to the left of middleIndex
equals the sum of elements to its right. If middleIndex
is 0, the left sum is 0. If middleIndex
is the last index, the right sum is 0. Return the leftmost middleIndex
or -1 if none exists.
The most efficient way to solve this problem is using the prefix sum technique. This avoids repeatedly calculating sums, leading to a linear time complexity solution.
Algorithm:
nums
array.i
:
nums[i]
from the total sum.i
is the middleIndex
, so return i
.nums[i]
.middleIndex
, return -1.Here are implementations in several programming languages:
Python:
class Solution:
def findMiddleIndex(self, nums: List[int]) -> int:
total_sum = sum(nums)
left_sum = 0
for i, num in enumerate(nums):
total_sum -= num #Right sum
if left_sum == total_sum:
return i
left_sum += num
return -1
Java:
class Solution {
public int findMiddleIndex(int[] nums) {
int totalSum = Arrays.stream(nums).sum();
int leftSum = 0;
for (int i = 0; i < nums.length; i++) {
totalSum -= nums[i]; //Right sum
if (leftSum == totalSum) {
return i;
}
leftSum += nums[i];
}
return -1;
}
}
C++:
class Solution {
public:
int findMiddleIndex(vector<int>& nums) {
int totalSum = accumulate(nums.begin(), nums.end(), 0);
int leftSum = 0;
for (int i = 0; i < nums.size(); ++i) {
totalSum -= nums[i]; //Right sum
if (leftSum == totalSum) {
return i;
}
leftSum += nums[i];
}
return -1;
}
};
JavaScript:
var findMiddleIndex = function(nums) {
let totalSum = nums.reduce((a, b) => a + b, 0);
let leftSum = 0;
for (let i = 0; i < nums.length; i++) {
totalSum -= nums[i]; //Right sum
if (leftSum === totalSum) {
return i;
}
leftSum += nums[i];
}
return -1;
};
Time Complexity: O(n), where n is the length of the input array. We iterate through the array once.
Space Complexity: O(1). We use only a few variables to store sums; the space used is constant regardless of the input size.