You are given a 0-indexed integer array nums
. An index i
is part of a hill in nums
if the closest non-equal neighbors of i
are smaller than nums[i]
. Similarly, an index i
is part of a valley in nums
if the closest non-equal neighbors of i
are larger than nums[i]
. Adjacent indices i
and j
are part of the same hill or valley if nums[i] == nums[j]
.
Note that for an index to be part of a hill or valley, it must have a non-equal neighbor on both the left and right of the index.
Return the number of hills and valleys in nums
.
Example 1:
Input: nums = [2,4,1,1,6,5] Output: 3 Explanation: At index 0: There is no non-equal neighbor of 2 on the left, so index 0 is neither a hill nor a valley. At index 1: The closest non-equal neighbors of 4 are 2 and 1. Since 4 > 2 and 4 > 1, index 1 is a hill. At index 2: The closest non-equal neighbors of 1 are 4 and 6. Since 1 < 4 and 1 < 6, index 2 is a valley. At index 3: The closest non-equal neighbors of 1 are 4 and 6. Since 1 < 4 and 1 < 6, index 3 is a valley, but note that it is part of the same valley as index 2. At index 4: The closest non-equal neighbors of 6 are 1 and 5. Since 6 > 1 and 6 > 5, index 4 is a hill. At index 5: There is no non-equal neighbor of 5 on the right, so index 5 is neither a hill nor a valley. There are 3 hills and valleys so we return 3.
Example 2:
Input: nums = [6,6,5,5,4,1] Output: 0 Explanation: At index 0: There is no non-equal neighbor of 6 on the left, so index 0 is neither a hill nor a valley. At index 1: There is no non-equal neighbor of 6 on the left, so index 1 is neither a hill nor a valley. At index 2: The closest non-equal neighbors of 5 are 6 and 4. Since 5 < 6 and 5 > 4, index 2 is neither a hill nor a valley. At index 3: The closest non-equal neighbors of 5 are 6 and 4. Since 5 < 6 and 5 > 4, index 3 is neither a hill nor a valley. At index 4: The closest non-equal neighbors of 4 are 5 and 1. Since 4 < 5 and 4 > 1, index 4 is neither a hill nor a valley. At index 5: There is no non-equal neighbor of 1 on the right, so index 5 is neither a hill nor a valley. There are 0 hills and valleys so we return 0.
Constraints:
3 <= nums.length <= 100
1 <= nums[i] <= 100
This problem asks us to count the number of "hills" and "valleys" in a given integer array. A hill is a point where its immediate neighbors (left and right) are strictly smaller, and a valley is a point where its immediate neighbors are strictly larger. Crucially, consecutive identical values are considered part of the same hill or valley.
The most efficient approach is a single pass through the array. We don't need to store any extra information beyond a pointer to the previous non-equal element.
Initialization: We start with a counter ans
initialized to 0 (for hills and valleys) and a pointer j
to 0 (index of the previous non-equal element).
Iteration: We iterate through the array from index 1 to n-2
(where n
is the array length). We skip consecutive equal elements.
Hill/Valley Check: For each index i
, we check if it forms a hill or a valley. This involves comparing nums[i]
with both nums[j]
(the previous non-equal element) and nums[i+1]
.
nums[i] > nums[j]
and nums[i] > nums[i+1]
, we increment ans
.nums[i] < nums[j]
and nums[i] < nums[i+1]
, we increment ans
.Update j
: After checking, we update j
to i
, so it points to the current non-equal element for the next iteration.
ans
and j
).class Solution:
def countHillValley(self, nums: List[int]) -> int:
ans = j = 0
for i in range(1, len(nums) - 1):
if nums[i] == nums[i + 1]:
continue
if nums[i] > nums[j] and nums[i] > nums[i + 1]:
ans += 1
if nums[i] < nums[j] and nums[i] < nums[i + 1]:
ans += 1
j = i
return ans
This Python code directly implements the algorithm described above. The other languages (Java, C++, Go, TypeScript, Rust) would follow a very similar structure, adapting syntax and data types accordingly. Refer to the original response for the code in these languages.